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1. Introduction

The dampers employed in automotive suspension are mostly designed to yield asymmetric
damping characteristics in compression and rebound in order to achieve a better compromise
between ride, road-holding, handling and control performance of the vehicle [1]. Owing to
considerably higher wheel velocity in the upward direction, when compared to that in the
downward direction, the dampers provide significantly higher damping force in rebound. The
non-linear and asymmetric damping properties of shock absorbers have been widely characterized
in terms of hysteresis and peak force–peak velocity characteristics [2,3]. A number of analytical
models based upon fluid flows through damper orifices and valves, and semi-empirical
formulations have been developed to characterize the asymmetric force–velocity characteristics
[4,5]. Since these models require prior knowledge of various coefficients to be derived from the
measured data for a specific damper, their applications have been limited for analysis of vehicle
ride and handling.

Majority of the analyses involving road vehicle ride dynamics, road-holding and handling and
control performance therefore consider either linear or piece-wise linear and symmetric damping
properties, assuming negligible contributions due to asymmetry, hysteresis and gas spring effect
[6]. Analytical and experimental investigations performed on high-performance dampers with
asymmetric properties in compression and rebound reveal considerable downward shift in the
mean position of the sprung mass, referred to as ‘packing or jacking down’ [7]. This phenomenon
has been attributed to asymmetric nature of the dampers. The potential energy stored in the
suspension spring during compression is dissipated during extension under higher damping
thereby reducing the rate of rebound motion and causing a downward shift in the operating
equilibrium position of the vehicle sprung mass.
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While a few studies have considered asymmetric suspension damping properties within the
vehicle models, the effect of asymmetric damping on the downward shift is not explored [8,9].
These studies involved the analyses of either acceleration response under random road excitations
or suspension deflection under bump type of excitation, where the downward shift in the sprung
mass deflection does not become apparent. The downward shift in sprung mass position can affect
the vehicle ride and handling due to variations in the ride height. In this study, the effect of
asymmetric damping on the sprung mass position is investigated through analysis of a two-
degrees-of-freedom (2-d.o.f.) quarter-vehicle model. The suspension damping is represented by
force–velocity characteristics asymmetric in compression and rebound. The analysis is performed
under harmonic displacement excitation and the results are presented to enhance an
understanding of the mechanism associated with downward shifting of the sprung mass.

2. Theory

Fig. 1 illustrates a 2-d.o.f. quarter-vehicle model. The vehicle body and chassis mass is
represented by the sprung mass m2; which is supported by the axle and the tired-wheel unsprung
mass m1 through a linear spring and a damper. The tire is characterized by a linear spring and a
viscous damper, assuming point contact with the road surface. Assuming small seal friction and
gas spring force, the force generated by the shock absorber is characterized by the asymmetric
force–velocity shown in Fig. 2. A shock absorber in general yields force limiting at higher
velocities through the use of either single or multi-stage pressure limiting valves [3,9]. The peak
force–peak velocity characteristics, therefore, yield a high damping coefficient at a low velocity,
which reduces to a considerably lower value at a higher velocity. The transition from high to low
damping coefficient occurs at a preset velocity. The force-limiting property of the damper is
neglected in this study in order to study the effect of damping asymmetry alone.
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Fig. 1. 2-d.o.f. quarter-vehicle model.
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The displacement co-ordinates x1 and x2 of the masses, shown in Fig. 1, for the ground
displacement x0; are not convenient to handle the non-linear force–velocity relationship of the
suspension damper. The extensions y1 and y2 of the springs, defined by y1 ¼ x1 � x0 and y2 ¼
x2 � x1 are the convenient intermediate co-ordinates for the present study. For dynamic analysis,
the force–velocity relationship of the suspension damper can be approximated by a sequence of
connected straight-line segments. This relationship is further simplified for the present analysis as

F
ðcÞ
2 ð ’y2Þ ¼

c
ð�Þ
2 ’y2; ’y2p0;

c
ðþÞ
2 ’y2; ’y2X0:

(
ð1Þ

Since F
ðcÞ
2 ð0Þ ¼ 0; the value of F

ðcÞ
2 at ’y2 ¼ 0 can be calculated from any one of the two expressions

in Eq. (1). Here, ’y2p0 represents the compressive motion of the damper, whereas ’y2X0 denotes
its rebounding motion. For a time interval within which ’y2 maintains the same sign, the system
can be treated like a locally linear one, and the exact solution of the equations of motion can be
constructed in terms of the initial conditions. This exact solution is valid only for the time interval
within which ’y2 maintains the same sign. The validity of the exact solution can be extended until
’y2 becomes zero. The exact solution at the end of this time interval can be used as the initial
condition to construct the exact solution for the subsequent time interval. Thus, a single
parameter c2 can be used to represent both c

ð�Þ
2 and c

þð Þ
2 in the presentation of the theory. The

equations of motion of the masses can thus be expressed as

ðm1 .y1 þ c1 ’y1 þ k1y1Þ � ðc2 ’y2 þ k2y2Þ ¼ �m1 .x0; ð2Þ

m2 .y1 þ ðm2 .y2 þ c2 ’y2 þ k2y2Þ ¼ �m2 .x0: ð3Þ

It is possible to express Eqs. (2) and (3) as a system of four first order differential equations and solve
them numerically using Runge–Kutta algorithm. However, the whipping up of the complementary
functions by damper non-linearity is expected to introduce numerical inaccuracies in the computation.
Laplace transform method is used to solve the governing equations in the present study.

In order to apply the Laplace transform method to this globally non-linear system, it is
necessary to define a local time t; corresponding to the global time t; by the relation t ¼ t� tin:
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Fig. 2. Idealized asymmetric force–velocity characteristics of a damper.
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Here, tin is the global time at the commencement of the time interval under investigation. The
ground displacement x0 for this analysis is taken as d0 sinoðt þ tinÞ: For the chosen type of
damper non-linearity, Eqs. (1)–(3) indicate that the parameter d0 can be used as a standard length
to non-dimensionalize the variables y1 and y2: With the understanding that the variables y1; y2

and x0 are non-dimensionalized using the standard length d0; the value of d0 can be set to unity
without any loss of generality. For Laplace transform analysis, it is convenient to assign f for the
variable � .x0 on RHS of Eqs. (2) and (3). Thus, the expression for f becomes o2 sinoðt þ tinÞ:
Introducing two additional variables y3 ¼ ’y1 and y4 ¼ ’y2; Eqs. (2) and (3) can be Laplace
transformed as

m1s2 þ c1s þ k1 �c2s � k2

m2s2 m2s2 þ c2s þ k2

" #
Y1

Y2

" #
¼ y10

m1s þ c1

m2s

" #
þ y20

�c2

m2s þ c2

" #

þ y30

m1

m2

" #
þ y40

0

m2

" #
þ F

m1

m2

" #
: ð4Þ

Here, the coefficient yi0 on RHS indicates the initial values of the variables yi: In the present
convention, the majuscule variable symbol represents Laplace transform of the corresponding
variable denoted by the minuscule. The variable F in Eq. (4) is the Laplace transform of the
variable f ¼ o2 sinotin coso t þ o2 cosotin sino t: The determinant of the coefficient matrix in
Eq. (4) can be simplified as

D ¼m1m2s4 þ ðm1 þ m2Þc2 þ m2c1f gs3 þ ðm1 þ m2Þk2 þ m2k1 þ c1c2f gs2

þ ðc1k2 þ c2k1Þs þ k1k2: ð5Þ

The roots of the characteristic equation, D ¼ 0 of the governing differential equations, determine
the complimentary part of the solution. The quartic expression for D; given in Eq. (5), can be
factorized into two quadratic factors with real coefficients. From the roots of these quadratic
factors, the four natural functions ckðtÞ of the complimentary part of the solution can be
determined. Since c2 can take either of the two values c

þð Þ
2 or c

�ð Þ
2 ; depending on the sign of ’y2; the

above-mentioned procedure yields two sets four natural functions corresponding to the two types
of motions of the suspension damper. From Eq. (4), the solutions for the transformed functions
Y1 and Y2 can be simplified as

Y1

Y2

" #
¼ y10

A11

A21

" #
þ y20

A12

A22

" #
þ y30

A13

A23

" #
þ y40

A14

A24

" #
þ F

A13

A23

" #
; ð6Þ

where

A11 ¼ m1m2s3 þ ðm1 þ m2Þc2 þ m2c1f gs2 þ ðm1 þ m2Þk2 þ c1c2f gs þ c1k2

� �
=D;

A12 ¼ m2k2s=D; A13 ¼ m1m2s2 þ ðm1 þ m2Þc2s þ ðm1 þ m2Þk2

� �
=D;

A14 ¼ m2c2s þ m2k2f g=D; A21 ¼ m2k1s=D;
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A22 ¼ m1m2s3 þ ðm1 þ m2Þc2 þ m2c1f gs2 þ m2k1 þ c1c2f gs þ c2k1

� �
=D;

A23 ¼ m2c1s þ m2k1f g=D and A24 ¼ m1m2s2 þ m2c1s þ m2k1

� �
=D:

Since y3 ¼ ’y1 and y4 ¼ ’y2; Laplace transform of the velocities of the masses can be expressed as
Y3 ¼ sY1 � y10 and Y4 ¼ sY2 � y20: Using Eq. (5), the expressions for Y3 and Y4 can be obtained
as

Y3

Y4

" #
¼ y10

A31

A41

" #
þ y20

A32

A42

" #
þ y30

A33

A43

" #
þ y40

A34

A44

" #
þ F

A33

A43

" #
; ð7Þ

where

A31 ¼ �m2k1s2 � c2k1s � k1k2

� �
=D; A32 ¼ m2k2s2=D;

A33 ¼ m1m2s3 þ ðm1 þ m2Þc2s2 þ ðm1 þ m2Þk2s
� �

=D; A34 ¼ m2c2s2 þ m2k2s
� �

=D;

A41 ¼ m2k1s2=D; A42 ¼ �ðm1 þ m2Þk2s2 � c1k2s � k1k2

� �
=D;

A43 ¼ m2c1s2 þ m2k1s
� �

=D; A44 ¼ m1m2s3 þ m2c1s2 þ m2k1s
� �

=D:

In the present nomenclature, Eqs. (6) and (7) can be expressed in its abridged form as Yi ¼P4
j¼1 Aijyj0 þ Ai3F : The solution of the equations can be obtained by taking the inverse Laplace

transform of the four variables Yi: Since the expressions of the coefficient variables Aij ; given in
Eqs. (6) and (7) are proper rational functions of s; they can be expressed as partial fraction form
using the roots of the characteristic equation D ¼ 0: The inverse transform of Aij can therefore be
expressed in terms of the natural functions as

aijðtÞ ¼
X4

k¼1

aijkckðtÞ: ð8Þ

It can be observed that the coefficients aijk in Eq. (8) are independent of the initial conditions and
the forcing frequency. Since f ¼ o2 sinotin coso t þ o2 cosotin sino t; the remaining component
Ai3F in the expression for Yi can be expressed as Ai3F ¼ o2 sinotinPi þ o2 cosotinQi: As before,
the partial fraction expression can be used to invert the functions Pi ¼ Ai3s=ðs2 þ o2Þ and Qi ¼
Ai3o=ðs2 þ o2Þ as

piðtÞ ¼
X4

k¼1

bikckðtÞ þ bi5 cosot þ bi6 sinot; ð9Þ

qiðtÞ ¼
X4

k¼1

gikckðtÞ þ gi5 cosot þ gi6 sinot: ð10Þ

Here, the coefficients bik and gik in Eqs. (9) and (10) are independent of the initial conditions.
By taking the inverse transform of Yi ¼

P4
j¼1 Aijyj0 þ Ai3F ; the solution for yi can be written as

yi ¼
P4

j¼1 yj0aijðtÞ þ o2 sinotinpiðtÞ þ o2 cosotinqiðtÞ: Using Eqs. (8)–(10), the solution can be
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further simplified in terms of the coefficients aijk; bik and gik as

yi ¼
X4

k¼1

likckðtÞ þ li5 cosot þ li6 sinot; ð11Þ

where

lik ¼

P4
j¼1 aijkyj0 þ biko

2 sinotin þ giko
2 cosotin; k ¼ 1; 4;

biko
2 sinotin þ giko

2 cosotin; k ¼ 5; 6:

(

The exact solution, given in Eq. (11), is valid for any time interval within which ’y2 maintains the
same sign. If ’y2 is zero at the beginning of the time interval, the value of c2 for the subsequent
motion can be selected from the sign of .y2: For this purpose, explicit expression for .y2 can be
obtained from Eqs. (2) and (3) as

.y2 ¼ ðc1 ’y1 þ k1y1Þ � ð1 þ m1=m2Þðc2 ’y2 þ k2y2Þ
� �

=m1: ð12Þ

In a theoretical sense, the system response can be reconstructed as a sequential arrangement of the
exact solutions for compressive ð ’y2p0Þ and rebounding ð ’y2X0Þ motions of the damper. At the
beginning and the end of these two types of motions, the velocity ’y2 is zero. Further, the final values
of the solutions for y1; y2; y3 and y4 of one type of motion can be used as the respective initial
conditions for the subsequent motion. The presence of exponential functions in the expressions of
natural functions can introduce numerical difficulties in implementing the above solution method.
Controlling the time interval of the computation can circumvent such numerical difficulties.

For approximate analysis, the dynamical system can be linearized by replacing the non-linear
damper with an equivalent viscous damper that dissipates the same amount of energy during
vibration. Assuming the velocity ’y2 as od2a cosðotþ fÞ; the energy dissipation within one cycle
can be estimated as ðp=2ÞðcðþÞ

2 þ c
ð�Þ
2 Þod2

2a leading to the equivalent damping coefficient as

c
eqð Þ
2 ¼ ðcðþÞ

2 þ c
ð�Þ
2 Þ=2: ð13Þ

However, the solutions of the linearized system equations cannot be expected to reveal special
features, such as the shift in the mean positions of the sprung mass.

3. Results and discussion

The system parameters for the quarter-car model are considered as follows: m1 ¼ 40 kg;
m2 ¼ 240 kg; c1 ¼ 50 N s=m; c

ð�Þ
2 ¼ 515 N s=m; c

ðþÞ
2 ¼ 2750 N s=m; k1 ¼ 160 kN=m and
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Table 1

Roots of characteristic equations for compressive and rebounding motions

Type of motion Compressive, ’y2o0 Rebounding, ’y2 > 0

First pair Real part �0.88846740 �5.6312991

Imaginary part 7.7499996 6.4808843

Second pair Real part �8.0316715 �38.986756

Imaginary part 69.315458 49.996050
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k2 ¼ 160 kN=m [10]. The roots of the characteristic equation D ¼ 0 for the compressive and
rebounding motions of the shock absorber are tabulated in Table 1. For the present analysis, the
ground displacement x0 ¼ sinot is imposed on the system at t ¼ 0: Assuming the system to be at
rest for to0; the initial values of the four system variables can be expressed as y10 ¼ 0; y20 ¼ 0;
y30 ¼ �o and y40 ¼ 0: Since the initial velocity ’y2 is zero, Eq. (12) is used to establish the sign of
.y2 as negative. Thus, the damper initially undergoes a compressive motion, and c2 ¼ c

ð�Þ
2 :

Table 1 indicates that the largest frequency components in the natural functions associated with
the compressive and rebounding motions are 69.3 and 50 rad/s, respectively, attributed to
resonances of the unsprung mass. The resonant frequencies of both the sprung and unsprung
masses tend to be lower in rebound than those in compression. In addition, the response will have
the forced vibration components at excitation frequency o: A nominal time step of tn ¼
0:1 p=maxð69:3; 50:0;oÞ s is chosen for the numerical computation. Whenever a change in the sign
of ’y2 is encountered the time step is systematically reduced to ensure ’y2E0 at the end of the step.
The error in the time step is kept below 10�15tn: Computations are carried out in a 16-bit
computer in quadruple precision.

A typical set of solutions for displacements and velocities of the unsprung and sprung masses
corresponding to the ground excitation at 2.0Hz are shown in Figs. 3–6. The linearized system
solutions are also included for comparison. These linearized solutions are obtained by replacing
c
þð Þ
2 and c

�ð Þ
2 with c

eqð Þ
2 : The displacement and velocity responses are normalized by using d0 and

od0; and ot is represented as the non-dimensional time. Fig. 4 indicates a significant difference
between the non-linear and linear solutions for the sprung mass displacement. This downward
shift in the mean position of the sprung mass is a phenomenon that cannot be explained by the
linearized model. However, the displacement of the unsprung mass, shown in Fig. 3 does not
exhibit this mean position shift. The velocity responses of the unsprung and sprung masses of the
non-linear model differ only slightly from those of the linear system, as shown in Figs. 5 and 6,
respectively.

It is desirable to understand the physical reason for the downward shift in the mean position of
the sprung mass. The result shown in Fig. 4 indicates that the suspension spring displacement can
be considered as a superposition of a vibrating component on a mean compression. This extension
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can be approximated as

y2Ed2m þ d2asinðotþ fÞ: ð14Þ

The mean value of the force developed by the suspension components can be estimated asZ 2p=o

0

k2y2 dtþ
Z ð3p=2�fÞ=o

ðp=2�fÞ=o
c
ð�Þ
2 ’y2 dtþ

Z ð5p=2�fÞ=o

ð3p=2�fÞ=o
c
ðþÞ
2 ’y2 dt

( ),
2p
o

� �
;

which simplifies to k2d2m þ ðcðþÞ
2 � c

ð�Þ
2 Þd2ao=p: Since, there is no shift in the mean position of the

unsprung mass, as seen from Fig. 3, the magnitude of this mean force transmitted must be zero.
Consequently, this no-mean-force concept may be used to estimate extension d2m of the
suspension from the alternating component using the relation

d2m ¼ � ðcðþÞ
2 � c

ð�Þ
2 Þo=pk2

n o
d2a: ð15Þ

The displacements of the masses, shown in Figs. 3 and 4, are periodic variations with a
predominant constituent at the forcing frequency along with its harmonics. The displacement can
be decomposed into a mean and an alternating component. Owing to the presence of higher
harmonics in the alternating component, the root mean square (r.m.s.) value is used to quantify
this component. The variations of the mean of the displacements of the sprung mass against the
forcing frequency are shown in Fig. 7, and those in the alternating components of the sprung and
unsprung masses are shown in Figs. 8 and 9, respectively. It can be observed, from Fig. 7, that the
mean position shift of the sprung mass cannot be predicted using the linearized equations of
motion. However, Figs. 8 and 9 indicate that the predictions of the alternating components from
the linearized system equations are reasonably accurate for design calculations.

It is interesting to investigate whether Eq. (15) can be used to estimate the mean position shift of
the sprung mass from the solutions of the linearized equations. The variations of the mean of the
extension of the suspension springs, shown in Fig. 10, and those in alternating components of
unsprung as well as sprung masses (Figs. 11 and 12), are needed for such verification. Here,
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Figs. 11 and 12 indicate that the predictions of the alternating components of these spring
extensions from the linearized equations are reasonably accurate for design calculations. Further,
Fig. 10 indicates that the mean position shift of the sprung mass is due to the compression of the
suspension spring.

The variation of the ratio of the mean to alternating component of the suspension spring
extension against the forcing frequency is shown in Fig. 13. As expected from Eq. (15), the
variation shown in Fig. 13 is approximately a straight line with slope �0:27953 Hz�1:
For this approximately linear variation, Eq. (15) predicts its slope as �2ðcðþÞ

2 � c
ð�Þ
2 Þ=k2; which

for the present data simplifies to �0:27938 Hz-1: Further, this approximate solution for the
mean component of the suspension spring extension can be used to assign the approximate
initial conditions for the numerical simulation of non-linear equations. Such an informed
choice of initial conditions can be used to control fluctuations in the natural function
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Fig. 12. Variations of the alternating component of the suspension spring extension with frequency (——, linear; ,

non-linear).
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components during convergence, which in turn will be helpful in numerical simulation of
non-linear equations.

4. Conclusions

The influence of suspension damper asymmetry on the vehicle vibration response due to ground
excitation is analyzed using the well-known quarter car model. The non-linear suspension damper
is considered to have different damping coefficients for compressive and rebounding motions of
the suspension. The exact solutions to these two types of motions are obtained using Laplace
transformation method. These exact solutions are used to reconstruct the motions of the non-
linear system. The solution of the non-linear system equations indicates that the suspension
damping asymmetry introduces a downward shift in the mean position of the sprung mass in
addition to the vibratory response, which conforms with the ‘packing down’ phenomenon.
However, the response of the unsprung mass does not exhibit such a mean position shift. The
mean position shift in the sprung mass is due to the mean compression in the suspension spring
caused by the force imbalance in the suspension damper during vibration. The concept that the
mean value of the damper force is zero, is used to express the mean compression of the suspension
spring in terms of the associated alternating component. The accuracy of this zero-mean-force
concept for the determination of the mean compression of the suspension spring is found to be
satisfactory.

The system equations can be linearized by replacing the non-linear damper with an equivalent
linear one on the basis of dissipated energy similarity. The linearized equations are found to
predict the vibratory component of the response to satisfactory accuracy. However, the presence
of the mean position shift of the sprung mass cannot be predicted. The mean position shift of the
sprung mass can be estimated from the alternating component solutions of the linearized
equations using the zero-mean-force concept, which is reasonably accurate for design calculations.
Such an improved solution can be efficiently used to formulate the initial conditions for numerical
simulation of the non-linear system equations.
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Fig. 13. Variations of the ratio of alternating component to mean value of the suspension spring extension with

frequency.
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